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Abstract
The increasing frequency and severity of heatwaves will intensify stress on plants. 
Given regional variation in heatwave exposure and expected differences in ther-
mal tolerance between species it is unlikely that all plant species will be affected 
equally by climate change. However, little is currently known about variation in the 
responses of plants to heat stress, or how those responses differ among closely 
related species adapted to different environments. Here we quantify the response 
of 17 Acacia species (175 RNA-seq libraries), from across Australia's diverse bi-
omes, to a multi-day experimental heatwave treatment to identify variation in 
transcriptomic and physiological responses to heat stress. Genes with known heat 
response functions showed consistent responses across Acacia species. Up to 
10% of all genes and over 100 gene families showed significant clinal variation 
in the magnitude of their expression plasticity across species. Specifically, gene 
families linked to the temperature stress response were overrepresented among 
significant relationships with home range temperature conditions. Gene expres-
sion responses seen on the first day of the heatwave were more frequently as-
sociated with home range climates, while expression responses by day four were 
more commonly related to photosystem II acclimation. Comparative transcriptom-
ics on non-model species has the potential to provide key information on stress 
response plasticity, especially when linked with our understanding of model spe-
cies. Our study indicates that the pressing challenge to identifying potentially vul-
nerable species to climate change could be benefited by the further exploration of 
clinal variation in transcriptome plasticity.
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1  |  INTRODUC TION

Sessile plants rely on physiological responses to overcome high 
temperatures during a heatwave (Zhu, 2016). Heatwaves are de-
fined as periods with abnormally high temperatures over multi-
ple days and in plants this can lead to reduced photosynthetic 
efficiency and cell damage (Huang et al., 2019; Vico et al., 2019). 
Increased temperature stress on plants under warmer and 
more variable temperature regimes could have meaningful im-
pacts on ecosystem primary productivity (Duffy et  al.,  2021; 
Xu et  al.,  2020), vegetation composition and the long-term per-
sistence of ecosystems (Neumann et al., 2017; Trisos et al., 2020). 
The physiological responses of plants to ameliorate temperature 
stress are well known in model species (Chaudhary et  al.,  2020; 
Perrone & Martinelli,  2020; Zhu,  2016). However, with future 
climate scenarios projecting more frequent and intense heat ex-
tremes (Duffy et al., 2021), it is increasingly important to under-
stand variation in the heat stress responses of non-model plants 
from diverse natural systems (Mokany et al., 2020).

The responses of plants to heat stress are wide ranging and 
include morphological, phenological, physiological and molecular 
responses that are known to be conserved across species (Wahid 
et  al.,  2007). To respond to heat stress, plants accumulate con-
served stress proteins such as Heat Shock Proteins (HSPs), which 
are chaperone proteins involved with protein folding, aggregation, 
translocation and degradation (Chen, Feder, & Kang, 2018). These 
processes are essential for cellular stability when adverse tempera-
tures negatively affect protein formation and stability (Chaudhary 
et  al.,  2020). Other examples of stress response gene ontologies 
include unfolded protein response, oxidative stress response, ubiq-
uitination, signalling (e.g. phosphorylation) and transcription factors 
(Wahid et al., 2007; Zhang et al., 2022). Changes in mRNA expres-
sion are commonly used to evaluate the molecular response of or-
ganisms to stress (DeBiasse & Kelly, 2016; Rivera et al., 2021). Many 
genes known to be involved in heat stress responses are conserved 
(Zhu,  2016) and their responsiveness to stressful temperatures 
should have become adapted to local climates to improve the per-
formance of plants (Calvo et al., 2020; Donelson et al., 2023).

To study local adaptation across environments, genomic SNP 
(Single-Nucleotide Polymorphism) markers are widely used to iden-
tify loci under selection through analyses of Genotype–Environment 
Associations (GEA, Ahrens et al., 2018; de Villemereuil et al., 2014; 
Frichot et  al.,  2013). However, differential gene expression has a 
high and under-evaluated potential to be an important molecular 
signature of thermal tolerance adaptation that could prove comple-
mentary to GEA methods (Price et al., 2022). Gene expression can 
be regulated by complex pathways making analyses of individual 
SNP markers potentially ineffective, due to epistatic interactions 
(Csilléry et al., 2018). Directly comparing gene expression plasticity 
across many related plant species, from a natural environmental 
cline in heatwave exposure, has not been explored with compara-
tive transcriptomics to our knowledge. With this proposed method 

of Expression–Environment Associations (EEA), gene expression 
plasticity would be associated with climate metrics in the same way 
allele frequencies are associated with climate for GEA studies. Using 
comparative transcriptomics to quantify responses to standardised 
temperature exposures could help identify clinal variation in the 
magnitude of heat stress responses (DeBiasse & Kelly, 2016) and the 
aspects of transcriptomic stress responses that are most relevant for 
estimating adaptive capacity (Donelson et al., 2023).

Currently, physiological measurements of plant thermal tol-
erance often focus on Photosystem II (PSII) efficiency since pho-
tosynthetic activity is tightly linked with heat exposure (Mathur 
et al., 2014). As a result, PSII Heat Tolerance (PHT) is used to iden-
tify threshold temperatures at which PSII is significantly inhib-
ited, often by measuring temperature-dependent change in basal 
chlorophyll fluorescence (expressed by the function T–F0, Arnold 
et al., 2021). Interspecific variation in PHT and the capacity of spe-
cies to acclimate PHT to changing conditions could be linked to sev-
eral molecular pathways but this is still poorly understood (Mathur 
et al., 2014). No studies to our knowledge have explicitly associated 
interspecific variability in PHT acclimation with the magnitude of 
transcriptomic heat stress responses. This is a similar principle to 
the EEA method but in this case PHT plasticity is being associated 
with expression plasticity.

Our study plant lineage, Acacia, is known to have high PHT ac-
climation (Andrew, Arnold, et  al.,  2022). This genus is ubiquitous 
across Australia's varied bioclimatic regions and highly invasive in 
diverse climates around the world (Gallagher et al., 2011). There are 
over 1000 species of Acacia native to Australia and the diversifica-
tion of the genus has been linked to its expansion into hotter and 
drier environments as the Australian continent became more arid 
since the Eocene (Renner et al., 2020). Frequent colonisation of new 
bioclimatic regions by Acacia in the past could be partially explained 
by high physiological plasticity and adaptive variation in genomic re-
sponses to climate extremes.

Using comparative transcriptomics we intend to identify clinal 
variation in gene expression plasticity across 17 Acacia species, in 
response to a controlled heatwave treatment. Although the direc-
tion of responses to heat stress are expected to be conserved across 
species in most cases (Chaudhary et  al.,  2020) we expect detect-
able variation in the magnitude of transcriptomic stress responses. 
Variation in transcriptomic responses could be a result of selection 
on genetic variation and/or adaptive plasticity regulated by epi-
genetic factors (Donelson et  al.,  2023). We expect clinal variation 
in responses, that is a potential signature of local adaptation, to be 
concentrated in gene families linked to transcriptomic heat stress 
responses (Nievola et al., 2017). Species from locations with more 
frequent heatwaves could be adapted to invest rapidly in their stress 
responses to manage negative consequences (e.g. protein misfolding 
or degradation). Conversely, we predict species from climates with 
relatively high mean annual temperature (MAT) to exhibit weaker 
molecular and PHT responses to the controlled heatwave due to 
these species having higher preferred temperature ranges.

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17473 by A
ustralian N

ational U
niversity, W

iley O
nline L

ibrary on [21/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 15ANDREW et al.

2  |  MATERIAL S AND METHODS

2.1  |  Summary

To improve our understanding of heatwave responses across related 
species from diverse climates, we cultivated 21 Acacia species using 
seed sourced from a single wild population per species that occupy 
a wide range of Australian climates (Figure 1a, Table S1) as well as 
being a phylogenetically diverse selection of species. After 4 months 
of growth in control temperature conditions (ca. 24°C day and 18°C 
night in 13–11 h cycles) plants were exposed to a 4-day heatwave 
(38°C day and 26°C night). Heatwave responses were quantified 
with coupled measurements of the transcriptome (gene expression) 
and PHT acclimation. Samples for transcriptomics were taken across 
3 days: 1 day prior to heatwave (hereafter ‘day prior’), at the onset 
of heatwave conditions (hereafter ‘day one’) and at the end of the 
heatwave (hereafter ‘day four’). Accompanying measurements of 
PHT were taken the day prior and at day four using basal chlorophyll 

fluorescence (ca. 4–6 samples per species at each time point for tran-
scriptomic and PHT data). A total of 175 samples from these species 
were sequenced from three time points across the heatwave, day 
prior n = 61, day one n = 63 and day four n = 51. This controlled envi-
ronment experiment quantifies the effect of the heatwave treatment 
on gene expression. To quantify heat stress frequency at species col-
lection sites, we use the number of days greater than 14°C above the 
MAT at the source location. This climate metric varies greatly across 
Australia and the source sites for our study species (Figure 1a), with 
14°C representing the difference in the daytime temperature be-
tween the control and heatwave in our experiment.

2.2  |  Growth conditions and sampling

The seed for the study species were sourced from the seed banks of 
the Australian Tree Seed Centre and the Australian National Botanical 
Gardens (Table  S1), which were all original wild-provenanced 

F I G U R E  1 Seed collection sites and 
principal components analysis (PCA) of 
individual transcriptomes. (a) Climate 
layer for the number of days >14°C above 
local MAT overlaid with exclusive seed 
collection sites for each species. Shading 
of collection site points matches legend 
for (b) that plots the first two PCA axes 
for gene expression ordination. This 
PCA uses the set of 7274 genes that 
were expressed in all samples. There 
is no strong differentiation between 
individual species, but two broad clusters 
of species are evident (top left vs. bottom 
right, separated by dashed line) with the 
Acacia subclade Botrycephalae clustering 
separately in the lower cluster (including: 
A. binervata, A. filicifolia, A. pycnantha and 
A. rubida). Samples collected during the 
heatwave (triangles and squares clustering 
towards the upper right, D1 = day one and 
D4 = day four) show some differentiation 
from the pre-heatwave samples (circles 
clustering towards bottom left, P = day 
prior). The shaded ovals capture the 
distribution of these time point groupings.
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collections. Seeds were sown over 2 days in August and grown in 
a temperature-controlled glass house in Canberra, Australia, for 
about 14 weeks. After germination seedlings were grown in indi-
vidual pots (15 cm diameter ca. 2 L of soil) that were laid out in a ran-
domised block design with 15 blocks of 40 pots (600 pots total, ca. 
30 pots per species were planted) with two pots per species in each 
block. Full details for glasshouse growing conditions are provided in 
Andrew, Arnold, et al. (2022).

After the growing period, pots were moved to the Cropatron 
glasshouse (Australian Plant Phenomics Facility, https://​www.​plant​
pheno​mics.​org.​au/​techn​ologi​es/#​green​houses) which had a high 
level of temperature control. For 12 days after the move plants were 
left to acclimatise with temperature set to the same levels as grow-
ing conditions (24°C day and 18°C night). On day 13 after the move, 
4 months after planting, a 4-day heatwave treatment started, 38°C 
day (13 h) and 26°C night (11 h). The duration and magnitude of this 
heatwave follows the Australian Bureau of Meteorology definition 
of at least 3 days of significantly above average maximum and min-
imum temperatures (http://​www.​bom.​gov.​au/​austr​alia/​heatw​ave/​
knowl​edge-​centre/​). The heatwave was applied for 4 days so that 
samples could be taken after three full days of elevated maximum 
and minimum temperatures, above initial growing conditions. The 
maximum temperature of 38°C selected here represents the upper 
range of mean maximum temperature experienced during the warm-
est month of the year at the species' source locations (range 19.1–
40.1°C, Table S1) and is experienced across regions in the Austral 
summer. Plants were watered each morning during the heatwave so 
there was no effect of droughting. Temperatures ramped up at 8 am 
and sampling was done between 10:30 am and 12 pm. Leaf samples 
for RNA extraction were taken the morning prior to the heatwave 
and on the first and fourth morning of the heatwave. Leaf samples 
were snap frozen with liquid nitrogen before being transported on 
dry ice to a −80°C freezer immediately after sampling.

Leaf samples were also collected the day prior and on day four of 
the heatwave to measure photosystem II heat tolerance (PHT) accli-
mation across the heatwave. The temperature-dependent chlorophyll 
fluorescence response (T−F0 curve) of leaf samples was measured 
to calculate the Tcrit and Tmax PHT metrics (Arnold et al., 2021). For 
the chlorophyll fluorescence response curves, the inflection point 
referred to as the critical temperature, Tcrit, represents the onset of 
damage, and the temperature at maximum F0, Tmax, corresponds to a 
temperature at which there could be sustained damage to the pho-
tosynthetic apparatus. Complete details of the system used are pre-
sented in Arnold et al. (2021) and the PHT data have been described in 
Andrew, Arnold, et al. (2022). Here, we test if changes in gene expres-
sion are related to acclimation in PHT, which we define as the increase 
in PHT (°C) from the day prior to day four of the heatwave.

2.3  |  RNA extraction and RNA-seq library prep

For extracting total RNA from Acacia leaf and phyllode tissue, the 
best method for tissue homogenisation proved to be grinding leaf 

samples with liquid nitrogen in a mortar and pestle. After grinding, 
samples were returned to dry ice until 16 samples were ready to 
start the RNA extraction. The kit used for RNA extraction was the 
NucleoSpin RNA Plant and Fungi Kit (Macherey-Nagel, Germany) 
using the standard protocol except for an adjustment to the lysis 
buffer as suggested by Ishihara et al. (2016). The lysis buffer aliquot 
per sample included 400 μL of PFL and 50 μL PFR buffers from the 
NucleoSpin Kit, 100 μL Fruit-mate for RNA Purification (Takara, 
Japan) and 5 μL of ß-mercaptoethanol. Of the 21 species grown, only 
17 species were sequenced at multiple time points across the heat-
wave treatment (Table S1) due to sequencing limitations.

After mRNA isolation with Oligo d(T)25 Magnetic Beads (New 
England BioLabs, Australia), strand specific RNA-seq libraries 
were prepared using an in-house template switching protocol. The 
protocol for library preps is fully described in Paten et  al.  (2022). 
Two plates of 96 libraries were prepared using custom barcodes. 
Samples were sequenced on a single NovaSeq S4 flowcell (300 cy-
cles, 2 × 150 bp), using a XP 4-lane splitter kit to split the two sample 
pools into two lanes each (i.e. set A on lanes 1 and 2 and set B on 
lanes 3 and 4). Sequencing was done at the Biomolecular Resource 
Facility at John Curtin School of Medical Research at The Australian 
National University.

2.4  |  Sequence data

Quality assessment and filtering of reads was done with fastp pro-
gram using default settings (Chen, Zhou, et al., 2018). The number of 
paired-end reads returned per library pre-filtering varied from 41.86 
to 110.85 million (mean = 65.99 million) and on average 98% of reads 
were retained after filtering. Eight low-quality libraries, four techni-
cal replicates and five libraries for species sequenced at only one time 
point were excluded from further analysis. The retained 175 RNA-
seq libraries from 17 species, were mapped to the Acacia pycnantha 
reference genome (McLay et  al.,  2022) using the STAR alignment 
program (Dobin et al., 2013). The STAR alignment used default set-
tings aside from --chimSegmentMin set to 10 and --alignEndsProtrude 
set to 10. The number of reads successfully mapped ranged between 
28.38 and 83.41 million (mean ± SD = 46.69 ± 10.22 million). The per-
centage of transcript sequences that mapped to a single locus ranged 
between 58.9% and 85.64%, mean ± SD = 71.73 ± 4.96%, with A. 
pycnantha individuals having the highest percentage of uniquely 
mapping sequence reads mean ± SD = 82.8 ± 2.07%. The percentage 
of reads that mapped to multiple loci ranged between 10.16% and 
16.23%, mean ± SD = 13.33 ± 0.98%. The percentage of reads that 
did not map successfully to the reference genome (‘too short’ cate-
gory) ranged between 2.68% and 30.5%, mean ± SD = 14.63 ± 5.04%, 
with A. pycnantha individuals having the lowest percentage of un-
mapped reads mean = 4.54%, SD = 2.07%.

These read alignment metrics show that a majority of reads 
mapped to genes with conserved sequences across the genus 
using the A. pycnantha reference genome. For genes that had tran-
script sequences consistently mapping to them across species, 
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differences in expression between species could be due to a num-
ber of factors including recent within-species gene duplications 
or sequence divergence leading to the uneven mapping of reads. 
However, these effects should be consistent within species across 
time points allowing for relative changes in expression across time 
points to still be comparable across species. As a result, analyses 
of clinal variation across species focus on changes in the relative 
abundance of transcripts.

Strict filtering of genes was applied to remove genes that did 
not have transcripts consistently aligning to them and may not have 
a well-conserved sequence across our Acacia species. Only genes 
that were present in all libraries at a minimum frequency of 0.25 
counts per million (minimum reads mapped ca 7) were kept for fur-
ther analysis. This filtering to retain only genes being detected in 
all individuals reduced the number of potential genes from 56,398 
annotated genes for the reference genome to 7274 retained genes. 
This filtering retained a high proportion of the reads that mapped 
to the reference genome with low variation between species 
(mean ± SD = 0.88 ± 0.02). This proportion did not vary much be-
tween species, showing that almost 90% of reads mapped to this set 
of core genes (approximately 13% of all genes) that had conserved 
sequences and/or consistent expression.

2.5  |  Transcriptomic analyses

All analyses and visualisations of transcript count data were car-
ried out using R version 4.0.5 (R Core Team,  2016). To test for 
Differentially Expressed Genes (DEGs) between the three time 
points the limma + voom R package was used (Law et al., 2014). For 
these three combinations of time points two tests were run. The first 
test used the standard method and an adjusted p-value threshold of 
.05 and the second test used a log2 FC threshold of 1 and adjusted 
p-value threshold of .05. The eBayes() and decideTests() functions 
were used to calculate t-statistics and adjusted p-values using de-
fault settings.

The normalised gene expression data from the DEG analy-
ses were used in further analyses including a PCA using the pr-
comp() function. To test for overrepresented GO terms (Carbon 
et  al.,  2019) from the list of DEGs the topGO R package (Alexa 
& Rahnenfuhrer, 2019) was used. The topGO analysis used only 
genes included in the analysis and GO terms included for the 
Acacia pycnantha reference genome. Fisher exact tests were also 
run in R using the fisher.test() function to test for overrepresented 
PANTHER protein families (Thomas et al., 2022) in the list of sig-
nificant DEGs. A Bonferroni correction of p-values from Fisher 
exact tests were applied using the p.adjust() function. The same 
methods were used to test for the overrepresentation of annota-
tions among significant clinal relationships.

To test if differentiation in gene expression between species was 
associated with environmental distance Bray–Curtis dissimilarity was 
calculated for pairs of RNA-seq libraries using normalised expression 
values for the core set of 7274 genes. Bray–Curtis dissimilarity was 

calculated using the vegan package (Oksanen et al., 2018). The dis-
similarity for library pairs that were from the same pair of species 
and the same time point, were averaged to get an average dissimi-
larity for each inter-species pair from each time point. Inter-species 
expression dissimilarity was plotted against the absolute difference 
between the environmental values for the two species source sites. 
Linear models were fitted for the three time points using the envi-
ronmental differences in MAT and Days >14°C over MAT.

Modelling changes in HSP expression over the heatwave 
was done with Hierarchical Generalised Additive Mixed Models 
(HGAMMs) with the gam() function from the mgcv package 
(Wood, 2017) The HGAMMs had random factor levels for each 
gene with individual smoothers that had independent shapes 
but fixed wiggliness penalising terms across all levels (Pedersen 
et al., 2019).

2.6  |  Association analyses

To test for clinal variation in fold change (FC) values across species, 
the log2 transformed FC values were calculated for each species 
when comparing day one against the day prior to the heatwave or 
day four against the day prior to the heatwave, so increases in ex-
pression during the heatwave were represented as positive values 
and decreases in expression as negative values. These FC values 
were used as response variables and the climate at the species' 
source locations and mean species PHT acclimation were used as 
predictors. The climate variables of MAT and average number of 
days per year getting to at least 14°C above MAT (hence, days 
>14°C above MAT) was calculated using AWAP daily maximum and 
minimum temperature data (Jones et al., 2009). The daily climate 
data for a 30-year period (1 January 1981 to the 31 December 
2010) were used as a representative period from which seed was 
collected. The daily maximum and minimum temperatures were 
averaged per day for 10 × 10 km grid cells across Australia before 
averaging at each grid cell across the year to get the yearly average 
temperature. The mean of yearly averages for the 30 years was 
used for MAT for each grid cell (this layer was very highly corre-
lated with WorldClim MAT layer (Fick & Hijmans, 2017), R2 = .99). 
The number of days per year that reached a maximum tempera-
ture that was 14°C above the yearly average temperature (i.e. the 
average temperature for the specific year) was then calculated and 
averaged for the 30 years to determine the number of days >14°C 
above MAT climate metric (Figure 1a). The days 14°C above met-
ric was calculated to capture temperature variability and the fre-
quency at which temperatures reach levels above the local MAT 
that is comparable to the magnitude of our heatwave treatment 
(change from 24 to 38°C daytime temperatures). The days >14°C 
above MAT layer was not correlated with MAT but was correlated 
with WorldClim annual precipitation (R2 = .63), with sites that have 
higher temperature variability being drier (this was tested based 
on our observations of Figure 1a). The latitude and longitude of 
seed collection sites were used to extract values for MAT and days 
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>14°C above MAT for each species. For our study species, the four 
predictor variables were not strongly correlated, with only Tmax ac-
climation and days >14°C above MAT having a significant negative 
relationship (p = .01, R2 = .40).

For linear models, response and predictor variables were 
scaled to give semi-partial correlations (here after, ‘semi-partial 
r’), the scaling set the mean is 0 and the standard deviation is 1 
(Schielzeth, 2010). This scaling results in estimates that are simi-
lar to a Pearson's correlation coefficient and can be related to es-
timates of other response variables within models and between 
similarly structured models with the same predictors, with higher 
slopes indicating stronger relationships. However, all p-values 
and t-values remain unchanged due to scaling (Schielzeth, 2010). 
Linear models were also weighted by the total sample size for the 
two time points used to calculate FC values, such that species with 
smaller sample sizes are less influential. Where the linear relation-
ships between changes in expression and predictors are signifi-
cant, we might expect false positives before Bonferroni correction 
as well as false negatives due to our limited sample of species (16 
species for day prior vs. day one and 12 species for day prior vs. 
day four models). We attempt to deal with this problem by testing 
which functional groups of genes (PANTHER protein families and 
biological process GO terms) have a higher-than-expected num-
ber of genes with significant relationships using Fisher exact tests. 
The mean FC values across PANTHER protein families and some 
GO terms were also averaged to look at clinal trends in responses 
at a more general functional level.

All plotting was done in R with most figures using ggplot2 and re-
lated packages. All R code processed gene expression data and meta 
data for our main analyses are available with online data (Andrew & 
Mokany, 2023a). The original sequence data are also made available 
on the CSIRO's Data Access Portal (see Andrew & Mokany, 2023b 
for part 1 and Andrew & Mokany, 2023c for part 2).

3  |  RESULTS

3.1  |  General transcriptome response to heatwave 
conditions

The RNA-seq data for all samples were aligned to the reference genome 
of Acacia pycnantha to use a reference with complete gene assemblies 
and the best available gene annotations. As a result, analyses focus on 
genes with conserved sequences across the lineage. Approximately 
88% (SD only 2% across all species) of all mapped reads aligned to 
this core set of 7274 conserved genes that represented about 13% of 
all annotated genes from the reference genome. There was however 
more variation in the percentage of all sequences that mapped to a 
single locus (range 58.9%–85.64%, mean ± SD = 71.73 ± 4.96%), with 
A. pycnantha individuals having the highest percentage of uniquely 
mapping sequence reads mean ± SD = 82.8 ± 2.07%. The general 
transcriptome response to the heatwave treatment was visualised 
using a PCA, that included the core set of 7274 genes detected in all 

individuals from the 17 Acacia species. The first two principal compo-
nents accounted for 19% of the variance in the expression profiles; 
the first two axes mostly captured differentiation between the day 
prior and during the heatwave (Figure 1b), showing that the general 
response to the heatwave treatment was consistent at both day one 
and day four. We see no independent clustering of individual species 
using the first two principal components, suggesting that responses 
to heat at the level of individual genes could also be consistent in di-
rection across species.

For our core set of genes we compared expression similarity 
among species for each time point to environmental distance be-
tween source sites. Overall expression dissimilarity was not cor-
related with environmental distance (R2 < .01 for all three timepoints 
against the two environmental variables, Figure  S1). This result 
shows that dissimilarity in normalised expression levels was not 
higher for pairs of species from more dissimilar environments.

3.2  |  Genes responding across the 
heatwave treatment

A large proportion of genes showed significant changes in expression 
levels across the heatwave, as determined by combined analyses of 
DEGs, that included all species and were run for all three comparisons 
of time points (proportion of significant DEGs out of 7274; day prior 
vs. day one = 49.0% (n = 3563), day prior vs. day four = 38.9% (n = 2833) 
and day one vs. day four = 29.6% (n = 2153), Table S2). When a thresh-
old for significance of a minimum absolute log FC of 1 was applied 
(i.e. a minimum of a doubling or halving in expression levels), less than 
2.5% of genes were found to be significant (165, 89 and 2 genes for 
the three comparisons respectively, Table S2, Figure S2).

To assess the functions being overrepresented in the DEG 
sets, we used PANTHER protein families (here after ‘protein fami-
lies’, Table S3a,b) that group related genes with a shared function, 
and Gene Ontology terms (GO terms, Table S4a,b) that categorise 
genes based on the biological processes with which they are as-
sociated. Analyses identified many overrepresented annotations 
linked to stress responses. As an example of consistent trends over 
the heatwave, the response of most HSPs showed the abundance 
of transcripts increasing across species by the morning of day one, 
only hours after exposure to heatwave temperatures, followed by 
a partial reduction in abundance by the morning of day four with-
out fully returning to pre-heatwave levels (Figure 2). In addition, we 
also see changes in HSP transcription factor abundance (Figure 2d), 
and other stress related transcription factors (Table S3a,b, e.g. MYB, 
NAC, WRKY and Two-component response regulator).

3.3  |  Variation in stress responses associated with 
source climate

We expect the conserved transcriptomic heat stress responses seen 
in this experiment to show clinal variation across species. At the level 
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    |  7 of 15ANDREW et al.

of gene families we see stronger responses in species from locations 
with more frequent temperature fluctuations >14°C above MAT 
and weaker responses in species from more stable tropical climates 
with high MATs (Figure 3a,b). The average upregulation of HSPs had 
a marginal negative relationship with MAT (p = .067, R2 = .22) and 
a significant positive relationship with the number of days >14°C 
above MAT at the seed source location (p = .015, R2 = .35). The aver-
age FC for upregulated protein folding genes followed similar trends 
to HSPs with a significant negative relationship with MAT (p = .005, 
R2 = .44, Figure  3). Response to heat genes that were upregulated 
also had a significant negative trend with MAT (p = .003, R2 = .47) and 
all upregulated response to stress genes had a negative relationship 
nearing significance (p = .077, R2 = .21).

Next we test if trends in the average response of gene families 
are replicated at the level of individual genes for the Acacia spe-
cies studied. A small proportion of genes had significant clinal re-
lationships with our selected climate metrics (range 4.45%–10.52% 
of genes were significant, Figure S3). We found that several pro-
tein families linked to heat stress responses were overrepresented 
among individual gene clinal relationships (Table 1 and Table S5). 
As expected, the mean FC of all genes within stress protein fam-
ilies also showed consistent linear relationships in many cases, to 
the trends of individual genes within those families (Table 1, see 
additional example in Table S6). Genes from the HSP families were 
most strongly associated with the number of days >14°C above 
MAT at source location. With the three major HSP families and 

F I G U R E  2 Changes in heat shock protein (HSP) expression over the heatwave. Each panel shows one of the four overrepresented HSP 
families, with generalised additive modelling (GAM) smoothers for each of the genes within families (smoothers show mean expression for 
all species and shaded area shows s.e.). Hierarchical GAMs were fitted with independent smoothers for each gene (coloured lines). Time 
point ‘P’ is for the day prior sampling, ‘D1’ for day one of the heatwave and ‘D4’ for day four of the heatwave. Many genes show a strong 
increase in expression going from the day prior to day one and some recovery by day four. However, some genes show minimal change in 
expression across time points (panels c and d), suggesting limited regulation, while others such as the HSP 20 family (a) change in parallel, 
suggesting a common pathway of regulation across genes. The expression values are the transformed values after normalisation for variation 
in library size.
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HSP transcription factors having a higher-than-expected number 
of significant positive relationships (fisher's exact test p < .05), in-
dicating these genes were more strongly upregulated in species 
from more variable climates (Table 1, Tables S5 and S7). The mean 
expression levels of these four HSP families before the heatwave 
were only marginally correlated with days >14°C above MAT for 
the HSP 70 family (t59 = −2.04, p = .045, R

2 = .07). This indicates 
that clinal variation in transcriptome responses was much higher 
than clinal variation in expression levels prior to stress exposure for 
these HSP families. In contrast, individual HSP were less strongly 
upregulated in species from localities with high MAT (Table 1 and 
Table S6). Individual protein folding genes were also less strongly 
upregulated in species from locations with high MAT (Table S8, re-
sults for GO terms).

Of the genes with significant linear relationships with seed 
source climate, most tended to have standard deviations in FC 
values of less than 1 across species (Figure S3). In fact, variation 
in log2 transformed FC values across species had SD values less 
than 1 for over 91% of genes (day prior vs. day one = 91.1% and 
day prior vs. day four = 92%). The high frequency of low SD values 
and semi-partial r values near zero indicates that the response of 
Acacia species to the heatwave was relatively minimal or consistent 
for this large proportion of genes. However, it is also interesting 
to consider which protein families had the most varied responses 
across species. Of the 645 genes that had a FC SD > 1 (day prior 
vs. day one comparison) 588 of these genes had changes in ex-
pression that varied between positive and negative across species. 
For these genes with the most varied responses across species 37 

F I G U R E  3 Clinal variation in average stress responses across species. The day prior versus day one log2 fold change (FC) values were 
averaged for upregulated stress response genes and plotted against climate and photosynthetic heat tolerance acclimation. (a) mean 
annual temperature at the source location (MAT), (b) average number of days annually >14°C above MAT at the source location, (c) leaf Tcrit 
acclimation and (d) leaf Tmax acclimation measured during the experiment. The mean FC for upregulated genes of each family were scaled 
so slopes are more comparable between functional groups. The red line shows the expected relationship for no variation between species. 
Significant relationships have bold lines. Genomic stress responses appear to be weaker for species from locations with high MATs and 
species with high Tmax acclimation, while species from more variable climates (high number of days >14°C above MAT) had strong responses.
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    |  9 of 15ANDREW et al.

protein families were overrepresented (Table  S9). Notably these 
families included WRKY, Auxin and X-box transcriptions factors 
and also an Oxygenase superfamily, Thioredoxin and Glutathione 
S-transferases families that are related to the oxidative stress re-
sponse (Table S9).

3.4  |  Gene expression responses associated with 
PHT acclimation

All Acacia species showed rapid PHT acclimation, and all species 
maintained PHT thresholds well above the experimental heatwave 

TA B L E  1 Responses associated with source climate and photosystem II heat tolerance (PHT) acclimation.

Protein family Individual genes Mean FC model

PANTHER ID Functional group Sign/anno Comp % Pos % Up Semi-partial r R2

Number of days > 14°C over MAT models

PTHR43888 Chaperone DNAJ 3/5 P vs. D1 100 100 .7 .51

PTHR10015 HSP TF 4/11 P vs. D1 100 100 .67 .45

PTHR19375 HSP 70 5/17 P vs. D1 100 100 .72 .51

PTHR11527 HSP 20 4/13 P vs. D1 100 100 .39 .17

PTHR11528 HSP 90 3/8 P vs. D1 100 100 .73 .61

PTHR48049 Glycosyltransferase 4/12 P vs. D1 100 0 .44 .27

PTHR10666 Ubiquitination 4/15 P vs. D1 75 100 .29 .08

PTHR24006 Deubiquitination 3/9 P vs. D1 66.7 0 .32 .2

PTHR12549 Demethylation 3/5 P vs. D1 66.7 100 .33 .13

PTHR31669 TF FAR1 3/10 P vs. D1 0 66.7 −.63 .32

Mean annual temperature (MAT) models

PTHR11214 Glycosyltransferase 4/8 P vs. D1 100 50 .57 .43

PTHR43096 Chaperone DNAJ 4/8 P vs. D1 25 75 −.52 .32

PTHR45633 HSP 60 mitochondrial 3/5 P vs. D1 0 100 −.59 .41

PTHR11527 HSP 20 4/13 P vs. D1 0 100 −.42 .21

PTHR10972 Membrane 3/6 P vs. D1 100 0 .66 .54

PTHR11566 Membrane 3/6 P vs. D1 100 0 .52 .36

PTHR10257 Phosphorylation 3/6 P vs. D1 66.7 0 .52 .33

Tcrit PHT acclimation models

PTHR31669 TF FAR1 4/10 P vs. D1 75 50 .66 .37

PTHR23172 Membrane 3/6 P vs. D1 33.3 0 −.47 .38

PTHR10766 Membrane 5/7 P vs. D4 0 0 −.62 .52

PTHR13301 TF X-box 4/10 P vs. D4 0 25 −.29 .16

PTHR13832 Phosphorylation 6/24 P vs. D4 50 50 .21 .06

Tmax PHT acclimation models

PTHR43888 Chaperone DNAJ 4/5 P vs. D1 0 100 −.68 .79

PTHR19375 HSP 70 4/17 P vs. D1 0 100 −.6 .49

PTHR13902 Phosphorylation 2/6 P vs. D1 100 50 .65 .55

PTHR10666 Ubiquitination 3/15 P vs. D1 0 100 −.25 .06

PTHR10766 Membrane 3/7 P vs. D4 0 0 −.53 .36

PTHR12321 CpG binding 2/5 P vs. D4 100 100 .52 .31

PTHR11566 Membrane 2/6 P vs. D4 0 0 −.49 .34

PTHR11932 Ubiquitination 2/6 P vs. D4 100 50 .33 .11

Note: Models for individual genes used the log2 transformed fold change (FC) in expression as the response variable for two comparisons: day 
prior vs. day one (P vs. D1) and day prior vs. day four (P vs. D4). Footnote: The ‘Sign/Anno’ column shows the number of genes with significant 
relationships over the total number of annotated genes from that family that were tested. There were 922 protein family and model combinations 
tested of which 68 were significantly overrepresented for clinal relationships. Of the 68 significant protein families, 30 of particular interest 
are shown here (full results Table S6). The ‘comp’ column has the time point comparison being used for the response variable. The ‘% pos’ is the 
percentage of significant genes with positive relationships, ‘% up’ percentage of significant genes that were upregulated, ‘semi-partial r’ values are 
for the accompanying models on mean FC values across the protein family, and ‘R2’ values are also for these mean FC models. Bold text indicates 
significant mean FC models.
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10 of 15  |     ANDREW et al.

temperature of 38°C (day four Tcrit 53.1–59.0°C, and Tmax 61.1–
67.1°C, where the Tcrit and Tmax metrics represent the temperatures 
when damage to PSII begins and when irreversible damage occurs 
respectively). The average increases for both PHT metrics, between 
the day prior to day four was also high, with average Tcrit acclimation 
at 12.1°C (range 7.7–19.1°C) and average Tmax acclimation at 8.2°C 
(range = 4.4–12.1°C, Table  S1). The average upregulation of HSPs 
had a significant negative relationship with Tmax acclimation (p = .02, 
R2 = .36, Figure 3d), which was similar to the negative relationship 
for the broader group of upregulated protein folding genes (p = .03, 
R2 = .33, Figure 3d). Individual HSPs and protein folding genes were 
also less strongly upregulated in species that acclimated their Tmax 
temperature to the greatest extent (Table 1, Tables S5 and S8). The 
small proportion of individual genes that had significant clinal re-
lationships with PHT acclimation (range 5.66%–11.29% of genes 
significant, Figure S3) also included other overrepresented protein 
families linked to membrane structure and transporters that were 
generally being downregulated at day four and had negative relation-
ships with PHT acclimation (see examples in Table 1 and Table S5).

4  |  DISCUSSION

Relationships between source environment and the magnitude of 
Acacia transcriptomic stress responses could be signatures of local 
adaptation in the form of adaptive plasticity (Donelson et al., 2023). 
These clinal trends could help describe local adaptation and the 
strategies that help plant be successful in varied climates (Savolainen 
et al., 2013). We observed rapid responses in gene expression within 
hours of the heatwave treatment starting and these changes were 
still largely present at the end of the heatwave (Figure 1b and S1). 
Interestingly, most of the associations between changes in gene ex-
pression and PHT acclimation were for the responses seen between 
day four and the day prior (Table 1). This could be expected as these 
timepoints coincide with when PHT was measured. Conversely, the 
main associations between changes in expression and climate were 
more commonly linked to initial responses between day one and the 
day prior (Table 1). These results highlight the importance of timing 
for sample collection in gene expression studies, as changes in gene 
expression are highly plastic and can show different patterns across 
the stress exposure (Buchberger et al., 2019).

In the case of this study the response of each gene to the heat-
wave can be considered a trait and the response of some genes 
could have been correlated with each other or possibly with overall 
phylogenetic relatedness. Westoby et al. (2023) makes the argument 
that phylogenetic effects and local adaptation are complementary 
explanations and not mutually exclusive alternatives. For this study, 
genes that have a strong relationship with climate are not going to 
have this variation jointly explained by overall transcriptome dis-
similarity due to the lack of collinearity between environment and 
transcriptome expression differentiation (Figure S1). For our ques-
tions it seems more relevant to evaluate what proportion of the total 
variance in gene expression responses can be explained by home 

range climate to assess the support for adaptive plasticity. Our ex-
perimental treatment only establishes the effect of the temperature 
treatment on gene expression while our comparative analyses is es-
sentially an observational analysis that used a controlled environ-
ment to measure responses to a consistent temperature stimulus. 
The study also focuses on seed sourced from the wild to avoid adap-
tation to captive conditions or transgenerational epigenetic effects 
in the captive environment that could erode adaptive variation. This 
also means the seed maturation environment could also be influenc-
ing transcriptomic variation due to epigenetic effects. To accurately 
predict the adaptive capacity of species, variation in functional traits 
that is a result of selection and epigenetics should be considered 
together if they cannot be partitioned (Donelson et al., 2023).

Temperature stress can broadly be defined as biological re-
sponses to abnormal temperatures (Rosenfeld et al., 2022) and the 
transcriptome can capture part of the functional variation in these 
stress responses. One example of a consistent response to the heat-
wave treatment that showed clinal variation across species was the 
upregulation of HSPs (Figure 3b). This response is generally a reac-
tion to the increasing frequency of misfolded proteins with higher 
temperatures (Wahid et  al., 2007). Under normal conditions, HSPs 
will block HSP transcription factors. This suppression mechanism 
allows HSP transcription factors to be more active as misfolded 
proteins accumulate and engage HSPs resulting in the released tran-
scription factors upregulating HSP expression (Zhang et al., 2022). In 
addition, the abundance of many HSP transcription factor transcripts 
also increased with the heatwave treatment (Figure 2d, Table S3a,b). 
The higher expression of HSP genes in species from climates with 
more variable daily temperatures is consistent with findings from 
Eucalyptus grandis using comparative proteomics (Maher et al., 2018). 
Finding a consistent trend across two taxonomic groups with both 
proteome and transcriptome data suggests variation in HSP upregu-
lation could prove to be a powerful functional trait for assessing ther-
mal tolerance adaptation in plants (Andrew, Gallagher, et al., 2022).

We also see some contrasting relationships between MAT at 
species source and number of days >14°C above MAT (Figure 3). The 
negative relationships between HSP upregulation and MAT are illus-
trative of weaker upregulation in tropical species from locations with 
high MAT and typically low temperature variability (Table 1, Table S5 
and Figure 3, Figure S3). Seed source locations with high daily vari-
ability around the MAT are generally in the drier parts of central 
Australia (Figure 1a). Species from tropical regions with higher MAT 
and higher annual precipitation may also routinely rely on transpi-
ration to keep leaf temperatures at levels suitable for maintaining 
photosynthesis and protein folding (Drake et al., 2018) and therefore 
also reduce the extent to which they invest resources in HSP pro-
duction when temperatures increase. Additionally, tropical species 
adapted to high MAT are likely to have a higher optimal tempera-
ture for cellular processes (Huang et al., 2019), so the experimental 
change in temperature we implemented may not stimulate as large 
of a response in these species.

In addition to the EEA analyses, relationships between variation 
in transcriptomic stress responses and PHT acclimation could also 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17473 by A
ustralian N

ational U
niversity, W

iley O
nline L

ibrary on [21/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 15ANDREW et al.

help explain variation in thermal tolerance. High Tmax acclimation 
could indicate that plants are acclimating well to the temperature 
stress and hence could have weaker responses for other indicators 
of stress. The weaker upregulation of HSP and chaperone genes in 
species with high Tmax acclimation could mean these species also ex-
perienced less stress in the form of misfolded proteins. Alternatively, 
there may be a trade-off between the upregulation of these genes 
and Tmax acclimation capacity. Gene expression responses associated 
with PHT acclimation also included other overrepresented protein 
families with relevant functions. Increases in temperature gener-
ally affect membrane permeability and fluidity (Zhang et al., 2022), 
therefore, gene families linked to cell membrane structure and func-
tion are expected to be associated with PHT acclimation. Negative 
relationships between the activity of membrane function genes and 
PHT acclimation (Table 1 and Table S6) suggest that species that had 
high PHT acclimation also more strongly downregulated these gene 
families, possibly to better maintain membrane fluidity and trans-
portation rates. Additionally, several transcription factors, signalling, 
phosphorylation, and ubiquitination protein families had average 
changes in expression that were associated with PHT acclimation 
(Table S6). These families could provide insights into the mechanisms 
for regulating PHT acclimation that are currently not well explained 
(Mathur et  al.,  2014) or prove to be useful surrogate measures of 
PHT acclimation and overall response levels. Some examples of 
these groups are MYB transcription factors (PTHR31314) and Auxin 
response factor (PTHR31384) that are linked to abiotic stress re-
sponses (Ghanashyam & Jain, 2009; Liu et al., 2015).

4.1  |  Interpretation of expression–environment 
associations

Genotype–environment association studies attempt to identify 
signatures of local adaptation through variation in population al-
lele frequencies using markers such as genome-wide SNPs (Rellstab 
et al., 2015). We cannot directly compare our method to GEA stud-
ies of potentially adaptive alleles but we do find similar clinal trends 
in the potentially adaptive plasticity of gene expression responses 
(Price et al., 2022). For GEA analyses of SNPs even subtle trends in 
allele frequencies can prove biologically meaningful signatures of 
adaptation (Frichot et al., 2013) and this may also be the case for the 
subtle EEA results. The number of significant genes that were linked 
to relevant gene families for this comparative transcriptome analysis 
is relatively high and with significant overrepresentation (Table 1, 
Table S6). These results demonstrate the potential for detecting sig-
natures of adaptive variation in the stress responses of non-model 
organisms with limited reference genome resources. Variation in 
transcriptomic responses could prove highly complementary to 
studies of genetic markers of adaptation that are more common 
(Ahrens et  al.,  2018). For example, we find that for all models of 
mean FC per protein family, 108 out of 154 (70.1%) of all signifi-
cant relationships were plausibly linked to annotations relevant to 
stress responses (Table S6). In contrast, two studies of convergent 

evolution in plants found limited overlap of significant SNP mark-
ers, when a larger proportion of genes would be expected to be 
under selection across strong climate gradients (Steane et al., 2017; 
Yeaman et  al.,  2016). Studies of genome-wide SNP markers have 
several other technical differences due to other neutral influences 
on allele frequencies, that lead to genetic drift in allele frequencies 
that are used to assess both population structure and selection di-
rectly (Ahrens et al., 2018; de Villemereuil et al., 2014). However, 
the two different methods in combination could support each oth-
er's results and help remove the risk of false positives which is a 
constant challenge for these genomic methods. Our approach also 
differs from GEA in focusing on the relative changes or plasticity 
in expression rather than examining expression levels directly. The 
abundance of transcripts could vary between species for many 
reasons, but changes in expression (i.e. changes in the relative 
abundance of transcripts) in response to a stimuli could provide a 
consistent insight into physiological plasticity that is linked to spe-
cies adaptive capacity (Bush et al., 2016). Looking at transcriptomic 
responses directly could also by-pass complex genetic architectures 
and epistatic effects by looking at the resulting expression patterns 
that may better match adaptation.

We explore how transcriptomic heat stress responses are 
associated with both the source climate of species and the PHT 
acclimation capacity of species. All four predictor variables were 
largely independent, though Tmax acclimation and the number 
of days >14°C above MAT were significantly negatively related 
(p = .01, R2 = .40). Therefore, we would expect the contrast-
ing direction of relationships detected for these two variables 
(Figure  3b,d). We also identified complex interactions between 
how species acclimate PHT and other aspects of transcriptomic 
heat stress responses. For example, species from climates with 
more variable temperatures had high HSP upregulation but low 
Tmax acclimation, possibly due to these species maintaining Tmax 
nearer to maximum prior to the heatwave, hence having greater 
readiness for frequent heat stress (Andrew, Arnold, et al., 2022; 
Maher et  al.,  2018). Clear relationships between source climate 
and stress responses are not ubiquitous, with a previous review 
reporting that three out of eight studies that compared paired 
populations found greater expression responses in the thermally 
tolerant population compared to the thermally sensitive popula-
tion (DeBiasse & Kelly, 2016). Our analyses of species from across 
a broad continuum of climates suggests these discrepancies in the 
differences between tolerant and sensitive populations could be 
partly explained by the climate variables used to define population 
sensitivity. Average climate metrics provide a good description of 
baseline environmental conditions but evolution is often driven 
by environmental extremes which shape demographic processes 
and impose selection pressure (Denny,  1993). The fact that we 
found contrasting relationships for our two environment metrics 
– average temperature and temperature variability (Figure  3a,b) 
– demonstrates the difficulties in identifying appropriate climate 
variables to consider when exploring clinal variation in gene ex-
pression responses and other functional traits.
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For some protein families the direction of clinal trends and 
the average expression response to the heatwave treatment was 
highly consistent across genes from the same family (Table 1). The 
DEG analysis of all species also found that 49% of genes had a 
relatively consistent response to the first day of the heatwave 
treatment despite the potential for interspecies variation, this 
consistent response is also visualised in the PCA from Figure 1b. 
However, some genes did show highly varied responses to the 
heatwave treatment (Figure S3). These genes that have varied re-
sponses across species could also prove informative. Of the genes 
that had SD in FC values greater than 1 and a mix of upregulation 
and downregulation across species, in response to day 1 of the 
heatwave treatment, 37 protein families were overrepresented. 
Of these families those linked to oxidative stress, phosphorylation, 
and regulating gene expression stand out (Table S9). The accumu-
lation of reactive oxygen species (ROS) is a universal symptom of 
stress and could also be a good indicator of temperature toler-
ance in plants. Interestingly, two protein families (PTHR47990 and 
PTHR24286) linked to the ROS stress response had negative rela-
tionships with PHT acclimation (Table S6) suggesting species with 
high acclimation had low ROS stress.

4.2  |  Advancing expression–environment 
association methods

The transcriptomic responses of Acacia species have shown associa-
tions consistent with local adaptation theory, however, this variation 
has not yet been linked to fitness with experimental validation. To 
our knowledge, there are currently no similarly structured compari-
sons of genomic responses to heat stress across a large plant gen-
era (Chaudhary et al., 2020). The analysis demonstrates new insight 
into how comparative transcriptomics can be used to describe clinal 
variation in stress responses (DeBiasse & Kelly, 2016). When trait 
plasticity is an active response to environment, molecular processes 
ultimately regulate the response. The abundance and activity of gene 
products can be regulated at several levels, including the epigenetic 
regulation of gene expression (Sonawane et al., 2017), mRNA regula-
tion and disruption (Crisp et al., 2017; Wu et al., 2020), the regulation 
of mRNA translation to proteins, and the post-translation regulation 
of protein activity (Smythers & Hicks,  2021). Transcriptome se-
quencing provides a powerful tool for capturing detailed changes in 
mRNA expression that can, in part, explain changes in protein pro-
duction which contribute to phenotypic plasticity (Todd et al., 2016). 
The power of comparative transcriptomics is that it is in the middle 
of many omics layers.

The explanatory power of the clinal trends in expression plas-
ticity varied across Panther protein families and GO terms for our 
sample of Acacia species. The most relevant protein families with 
mean responses showing strong clinal trends had R2 values that 
ranged between .27 and .79 (Table 1). For the more general trends 
of GO terms and all HSPs plotted in Figure 3 significant trends had 
R2 values ranging between .33 and .47 (Table S7). For these broader 

trends we also report the slopes for the unscaled data that tell us 
more about the magnitude of the variation in expression plasticity. 
For example, HSP upregulation increased by 0.015 log2 FC units per 
day that temperatures are 14 over MAT per year. This relationship 
means for ever extra 10 days >14°C above MAT we would expect 
about an 11% stronger HSP response to heat. These clinal trends 
and general rules for defining the extent to which species should 
adapt to changing conditions, still need to be tested across more 
species and environments to further assess the explanatory power 
of these data prior to their potential use in decision making.

Our study is also unique in capturing responses in native species 
at multiple time points across a multiday heatwave, though sampling 
more time points and species will improve interpretation and statis-
tical power (Table S1). For our study design we choose to maximise 
the number of included species to show clinal trends across spe-
cies. Previously, most comparative transcriptomic studies on stress 
responses have focused on paired species comparisons (DeBiasse 
& Kelly, 2016). The extent to which we identify consistent changes 
in expression to the controlled heatwave and also clinal variation 
in these transcriptomic stress responses all supports the value of 
our study design and results. Combinations of functional traits and 
phenotypic plasticity are critical to how plants adapt to temperature 
extremes (Calvo et al., 2020; Des Marais et al., 2013). Standardised 
protocols for quantifying transcriptome responsiveness to stressors 
will need to be applied more broadly to grow our understanding of 
adaptive plasticity.

5  |  CONCLUSIONS

Our set of diverse Acacia species responded dynamically and rela-
tively consistently to our controlled heatwave based on transcrip-
tome responses and PHT acclimation. For this study we mapped 
reads to the reference genome of Acacia pycnantha and were able 
to capture repeatable responses in a subset of 7274 genes that ac-
counted for around 88% of all transcript sequences that success-
fully mapped to the reference genome. Taken together our results 
highlight how the sequence of genes and their response to stress 
can be highly conserved across species, making comparative studies 
across diverse taxa more tractable (Emms & Kelly, 2019). Clinal vari-
ation in responses could be seen within hours of starting the heat-
wave treatment. This rapid response demonstrates the importance 
of sensing changes in the environment for plants. The relationships 
between transcriptomic responses and PHT acclimation also sug-
gests that the regulation of the two responses varies between spe-
cies adapted to different biomes. Clinal variation in stress responses, 
found across species from strongly differentiated environments, 
could prove to be a powerful tool for deepening our understanding 
of local adaptation to temperature extremes. The results of this ex-
ploratory study suggest the possibility that climate change winners 
and losers (Hoffmann & Sgrò, 2011) could be identified by how well 
species match EEA that are documented for diverse plant species 
across climate gradients.
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